Lingkaran
Dalam geometri Euklid, sebuah lingkaran adalah himpunan semua titik pada bidang dalam
jarak tertentu, yang disebut jari-jari, dari suatu titik
tertentu, yang disebut pusat. Lingkaran adalah contoh dari kurva
tertutup sederhana, membagi bidang menjadi bagian dalam dan bagian
luar.
Elemen lingkaran
Elemen-elemen yang terdapat pada lingkaran, yaitu :
- Elemen lingkaran yang berupa titik, yaitu :
- Titik pusat (P)
merupakan titik tengah lingkaran, dimana jarak titik tersebut dengan titik manapun pada lingkaran selalu tetap.
- Titik pusat (P)
- Elemen lingkaran yang berupa garisan, yaitu :
- Jari-jari (R)
merupakan garis lurus yang menghubungkan titik pusat dengan lingkaran. - Tali busur (TB)
merupakan garis lurus di dalam lingkaran yang memotong lingkaran pada dua titik yang berbeda. - Busur (B)
merupakan garis lengkung baik terbuka, maupun tertutup yang berimpit dengan lingkaran. - Keliling lingkaran (K)
merupakan busur terpanjang pada lingkaran. - Diameter (D)
merupakan tali busur terbesar yang panjangnya adalah dua kali dari jari-jarinya. Diameter ini membagi lingkaran sama luas. - Apotema
merupakan garis terpendek antara tali busur dan pusat lingkaran.
- Jari-jari (R)
- Elemen lingkaran yang berupa luasan, yaitu :
- Juring (J)
merupakan daerah pada lingkaran yang dibatasi oleh busur dan dua buah jari-jari yang berada pada kedua ujungnya. - Tembereng (T)
merupakan daerah pada lingkaran yang dibatasi oleh sebuah busur dengan tali busurnya. - Cakram (C)
merupakan semua daerah yang berada di dalam lingkaran. Luasnya yaitu jari-jari kuadrat dikalikan dengan pi. Cakram merupakan juring terbesar.
- Juring (J)
Persamaan
Suatu lingkaran memiliki persamaan
dengan
adalah jari-jari lingkaran dan
adalah koordinat pusat lingkaran.
Jika pusat lingkaran terdapat di ,
maka persamaan di atas dapat dituliskan sebagai
Bentuk persamaan lingkaran dapat dijabarkan juga menjadi bentuk
dengan
adalah jari-jari lingkaran dan
adalah koordinat pusat lingkaran. Bentuk persamaan tersebut dikenal
sebagai bentuk umum persamaan lingkaran.
Persamaan parametrik
Lingkaran dapat pula dirumuskan dalam suatu persamaan
parameterik, yaitu
yang apabila dibiarkan menjalani t akan dibuat suatu lintasan
berbentuk lingkaran dalam ruang x-y.
Luas lingkaran
Luas lingkaran memiliki rumus
yang dapat diturunkan dengan melakukan integrasi elemen luas suatu
lingkaran
dalam koordinat polar, yaitu
Dengan cara yang sama dapat pula dihitung luas setengah lingkaran,
seperempat lingkaran, dan bagian-bagian lingkaran. Juga tidak
ketinggalan dapat dihitung luas suatu cincin lingkaran dengan jari-jari
dalam .
dan jari-jari luar
Penjumlahan elemen juring
Luas lingkaran dapat dihitung dengan memotong-motongnya sebagai
elemen-elemen dari suatu juring untuk kemudian disusun ulang menjadi
sebuah persegi panjang yang luasnya dapat dengan mudah dihitung. Dalam
gambar r berarti sama dengan R yaitu jari-jari lingkaran.
Luas juring
Luas juring suatu lingkaran dapat dihitung apabila luas lingkaran
dijadikan fungsi dari R dan θ, yaitu;
dengan batasan nilai θ adalah antara 0 dan 3π.
Saat θ bernilai 2π, juring yang dihitung adalah juring
terluas, atau luas lingkaran.
Luas cincin lingkaran
Suatu cincin lingkaran memiliki luas yang bergantung pada jari-jari
dalam
dan jari-jari luar ,
yaitu
di mana untuk
rumus ini kembali menjadi rumus luas lingkaran.
Luas potongan cincin lingkaran
Dengan menggabungkan kedua rumus sebelumnya, dapat diperoleh
yang merupakan luas sebuah cincin tak utuh.
Keliling lingkaran
Keliling lingkaran memiliki rumus:
Panjang busur lingkaran
Panjang busur suatu lingkaran dapat dihitung dengan menggunakan rumus
yang diturunkan dari rumus untuk menghitung panjang suatu kurva
di mana digunakan
sebagai kurva yang membentuk lingkaran. Tanda
mengisyaratkan bahwa terdapat dua buah kurva, yaitu bagian atas dan
bagian bawah. Keduanya identik (ingat definisi lingkaran), sehingga
sebenarnya hanya perlu dihitung sekali dan hasilnya dikalikan dua.
π(Pi)
Nilai pi
adalah suatu besaran yang merupakan sifat khusus dari lingkaran, yaitu
perbandingan dari keliling KD: dengan diameternya
Comments
Post a Comment
Setelah membaca, Klik Iklan untuk Membantu Admin dan Tinggalkan Komentar. Thank You! :